Performance Portability for Burst Buffers with the Scalable Checkpoint/Restart Library (SCR)

DOE COE Performance Portability Meeting

Kathryn Mohror and Michael Pozulp

Writing checkpoints to the parallel file system is very expensive

The Scalable Checkpoint/Restart Library (SCR) is a production-ready implementation of multilevel checkpointing

- Multilevel checkpointing
 - Use different levels of storage for checkpoints, e.g. node local storage
- Treat checkpoints as "special" files
 - By nature temporary, cache most on node local storage, throw them away
 - Typically failures affect a single node at a time

Lawrence Livermore National Laboratory

The Scalable Checkpoint/Restart Library (SCR) is a production-ready implementation of multilevel checkpointing

Aggregate checkpoint bandwidth to node-local storage scales linearly on Coastal

Burst buffers are a new layer in the storage hierarchy to buffer the bursty I/O operations of HPC applications

How can applications achieve portable I/O performance across burst buffer implementations?

- Cray DataWarp, Intel, IBM
- HIO, others?
- Will I need to change my I/O strategy to get good performance?

SCR can abstract away the differences in hierarchical storage systems

- Goal is for applications to integrate SCR, and never have to worry about the underlying storage system
 - Integrate SCR versus altering application for each new system
 - Once you integrate SCR, SCR will do the Right Thing™ with your checkpoints

Using SCR for Multilevel Checkpointing in Mercury's Trinity Open Science Project

DOE COE Performance Portability Meeting

Mercury

Monte Carlo Particle Transport

- Mercury + SCR selected for Trinity Open Science
- Weak scaling problem (I/O per processor is constant)
 - ☐ Checkpoint once to RAM disk vs. Lustre
 - Scale from 1 to 4096 nodes in powers of 2
 - □ 30X maximum speedup at 4096 nodes
- User problem
 - Checkpoint every 10 cycles to RAM disk vs. Lustre
 - Run on 36 nodes
 - 20X reduction in median time-to-checkpoint

Mercury Checkpoint Scaling Study

Mercury User Problem

Conclusion for Mercury + SCR

- Observed worthwhile speedups for checkpointing with SCR
- Interested in replicating scaling study on Trinity's Burst Buffers
- A note on how we integrated SCR into Mercury
 - Used SCR SC'14 and SC'15 Tutorial Slides, SCR User's Guide
 - Checkpoint was as simple as substituting a file system path using SCR_Route_File() API call
 - Restart was harder, but not complicated
 - Cannot assume that all ranks can read every file that was written during a checkpoint

Questions?

- Contact the SCR team
 - http://computation.llnl.gov/projects/scalable-checkpoint-restart-for-mpi
 - Project description
 - User's guide
 - Links to software
 - scalablecr-discuss@lists.sourceforge.net

